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Assessing Schedule Qualities in Paratransit
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The simple productivity measures and hard constraints used in many
paratransit vehicle scheduling softwar e programs do not fully capture
theinterest of all the stakeholdersin atypical paratransit organization
(e.g., passengers, drivers, municipal government). As a result, many
paratransit agencies still retain a human scheduler to look through all
of the schedulesto manually pick out impractical, unacceptableruns.
(A runisconsidered onevehicle' sschedulefor oneday.) Thegoal of this
resear ch wasto develop a systematic tool that can computeall therelevant
performance metrics of a run, predict its overall quality, and identify
bad runsautomatically. Thispaper presentsamethodology that includes
a number of performance metrics reflecting the key interests of the
stakeholders (e.g., number of passengers per vehicle per hour, dead-
heading time, passenger wait time, passenger ride time, and degree of
zigzagging) and a data-mining tool to fit the metricsto theratings pro-
vided by experienced schedulers. The encouraging preliminary results
suggest that the proposed methodology can be easily extended to and
implemented in other paratransit organizationstoimproveefficiency by
effectively detecting poor schedules.

Demand-responsivetransit or paratransit operationsinvolve anumber
of managerial functions, such astrip reservation, vehicle monitoring,
scheduling and dispatching, and business reporting. Among these
functions, the most challenging is the scheduling process, which
generates vehicle operating schedules by assigning trip requests to
afleet of vehicles. Thechallengeismainly caused by theinvolvement
of multiple stakeholders in a paratransit system, including the ser-
vice provider, the customers, and the drivers, all of whom usually
have diverseinterests and thus different views of what constitutesa
good or bad run. (A runisconsidered asingle vehicle' s schedulefor
asingleday.)

From acustomer’ s point of view, agood runisonethat would lead
to on-time pickup and delivery, minimum diversion from a direct
ride, and consistent and familiar routes and drivers. These concerns
aretypically trandated into scheduling constraints such as guaranteed
service, maximum ride time, and maximum wait time.

The drivers’ perspective on schedules is mostly related to the
characteristics of their assigned shifts, such as shift type, availabil-
ity of appropriate breaks (e.g., for lunch), types of clients assigned
(e.g., ambulatory versuswheel chair passengers), the number and types
of trips (e.g., long versus short), and, for contract-based service, total

R. Shioda and M. Shea, Department of Combinatorics and Optimization, and
L. Fu, Department of Civil Engineering, University of Waterloo, Waterloo, Ontario
N2L 3G1, Canada. Corresponding author: R. Shioda, rshioda@uwaterloo.ca.

Transportation Research Record: Journal of the Transportation Research Board,
No. 2072, Transportation Research Board of the National Academies, \Washington,
D.C., 2008, pp. 139-147.

DOI: 10.3141/2072-15

139

income. Some of these concerns can be accommodated, either fully
or partialy, in the scheduling process (such as breaks and number
of trips), whereas others are difficult to explicitly account for (1).

Lastly, the service providers and agencies must ensure the finan-
cial vitality of their service systemsunder constrained resourcesand
budget. Maximizing productivity while meeting demand istherefore
one of their top operating goalsin preparing service schedules. This
goal isusually trand ated into the scheduling objective of minimizing
total service hours and vehicle distance.

Toaccount for all these concerns, the scheduling process must take
into account multiple system objectives and alarge set of system
constraints. Complicating the matter further isthe fact that many of
these objectives conflict with one another; satisfying some would
mean sacrificing others. For example, ahighly productive schedule
with efficient ridesharing and utilization of available vehicle capacity
could result in significant delaysto passengers. In contrast, asystem
that emphasi zed schedul e adherence or on-time performance would
generally have to sacrifice some productivity to achieve this goal.

A range of different scheduling methods, from manual to fully
automated, are being used today in the paratransit industry (1, 2).
Manual scheduling by human schedulersis still quite popular in
paratransit, especially in small- and medium-sized systems. Human
schedulers can utilize their experience and knowledge to identify
trip patterns and devise near-optimal schedules. They also have the
unique ability to deal with qualitative and conflicting goals and find
balanced solutions that are acceptable to all stakeholders. Manual
scheduling is, however, limited inits ability to handle high-demand
service systems (e.g., those with more than 1,000 trips per day). For
these systems, acomputerized scheduling system that can efficiently
solvelarge, real-world scheduling problemsisrequired. The speed
advantages of these systems also mean that more options can be
assessed and what-if analyses easily conducted.

Central to most computerized scheduling systemsisaset of opti-
mization algorithmsthat solve amathematically formulated problem
called dial-a-ride problem (DARP). The common formulation of
DARP includes a generalized cost function to be minimized and a
set of service quality constraints (3—7). Because of the fundamental
nature of these algorithms, the computer-generated runsusually have
alargevariationin performance; that is, they include some good runs,
some mediocre ones, and afew bad ones. It is often these bad runs
that generate customer and driver complaints and create a negative
view of the underlying scheduling system.

The performance of computer-aided scheduling systemswasinves-
tigated by Pagano et al., who found that many operators do not use
the scheduling features of the software packagesthat they purchased
and that some “pre- and post-implementation comparisons do not
show the kind of dramatic efficiency changes operators have hoped
for” (8). A later study by Pagano et a. found that computer-aided
scheduling and dispatching had a significant influence on the quality
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of service of paratransit systems (9). A recent study by Fu et a. also
studied the impact of scheduling method on the technical efficiency
of aparatransit system, finding mixed results (10).

Toidentify problematic, low-quality runs, some agencies and ser-
viceproviders still use human schedulersto check all runs generated
by a computer system and screen those that are not acceptable (2).
The bad runs are then modified by either removing some trips or
exchanging trips with other runs. This process is time consuming
and tedious and places asignificant burden on the human schedulers.

This research attempts to develop a methodology that can be
used to evaluate computer-generated runs and identify those that
are likely unacceptable from the view of an experienced sched-
uler. Thefocusison testing the feasibility of such a methodology
instead of developing ageneric tool that can be applied to all sys-
tems. Several performance metrics are first introduced that are
considered to bereflective of the overall quality of arunwith respect
to the key interests of the stakeholders. A data mining methodology
tofitarun’smetricstoitsquality asrated by an experienced sched-
uler is then described. The proposed methodology was imple-
mented and assessed using field data from the Disabled and Aged
Regional Transportation Systems (DARTS) of Hamilton, Ontario,
Canada.

BACKGROUND AND PROPOSED METHODOLOGY

DARTS s adoor-to-door transportation service for the elderly and
disabled in the city of Hamilton. DARTS has 135 employees and a
fleet of 66 buses and 20 vans directed on variable bus routes by a
schedule and dispatch service that serves approximately 8,000 reg-
istered passengers. Currently, DARTS uses a computerized sched-
uling system to generate schedules for daily operations. A human
scheduler is, however, employed to manually review al the runsto
identify theimpractical, unacceptableruns. Thegoal of thisresearch
is motivated by the need to develop atool that can help the dis-
patcher rank the computer-generated runsto identify those considered
unacceptable.
The proposed methodology isin two parts:

1. Performance metrics and quality rating: All the performance
metricsthat affect the quality of arun are defined. These are measures
that the decision maker would consciously or unconsciously use to
rate arun. The schedule is essentially being represented with these
quantifiable measures. Also, an employee of DARTS acted as the
decision maker by rating past runson ascale of 1to 10 (with 1 being
the worst and 10 being the best).

2. Data-mining model: Given the performance metrics and the
corresponding ratings for a group of schedules, a data-mining tool
wasfit to model the rel ationship between the metrics and theratings.
After thistool is refined, it will be used to determine the quality
of unrated runs. Thisfinal step will allow DARTSto automate its
schedule review process.

PERFORMANCE METRICS AND QUALITY RATING

From several discussionswiththe DARTSteam, including the man-
ager, schedulers, dispatchers, and drivers, 28 performance metrics
were established. Figure Lillustrates an example of arun with some
of its corresponding performance metrics. These metrics were then
grouped into those believed to have a positive effect on the quality
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of arun, and those believed to have a negative effect on quality of a
run. Several examplesfollow.

Metrics with Positive Effects on Quality

e PSNGR/HR: number of passengers per hour (i.e., the average
number of passengersthe vehicle servicesper hour onthe given run);

e TRIPS/HR: number of trips per hour (i.e., the average number
of stops the vehicle services per hour on the given run). If multiple
passengers get picked up or dropped off at asingle stop, the stop is
counted only once; and

e WC/HR: wheelchair passengers serviced per hour (i.e., the
average number of wheelchair passengers the vehicle services per
hour on the given run).

Metrics with Negative Effects on Quality

e DEADHEAD: total deadheading time (measuresthetotal time
the vehicle runs without a passenger);

e DELAY: total cumulativedelay timefor passengers(i.e., thedif-
ference between the estimated time of arrival and the negotiated
arrival time, exceeding 15 min. For example, if the negotiated timeis
4:00 p.m. and the estimated arrival timeis 4:10 p.m., then thereisno
delay. However, if the arrival time is 4:20 p.m., then thereisadelay
of 5min. Thisisacumulative measure over al passengerson therun);

e RIDETIME: total cumulativeridetimefor al passengers, which
sums up the total duration that each passenger spends on the vehicle;

e RIDE >4b5: total cumulativeridetimefor all passengers exceed-
ing 45 min, which sums up the total duration exceeding 45 min that
each passenger spends on the vehicle;

e AVGRIDE: averageridetime (i.e., thetotal duration each pas-
senger spends on the vehicle);

e AVG DIST: average trip distance (i.e., the average distance
between two consecutive stopsin the run);

e MAX DIST: maximumtrip distance (i.e., the maximum distance
between any two consecutive stops in the run);

e DISTS> 5k: proportion of distancesgreater than or equal to 5km
(i.e., thefraction of distances between any two consecutive stops
that exceeds 5 km); and

e 77(0, d): zigzag metric [i.e., the proportion of turns that have
an angle less than or equal to 6 and a distance greater than or equal
tod (in meters). It is meant to detect sharp turns or capture runs that
go from one part of the city to the far opposite side of the city. For
example, if the vehicle goes from point A to point B to point C,
this turn would be counted if the angle (AB, BC) < 6 and distance
(BC) > d. Specific zigzag metrics calculated include those with 6
valueranging from 20 to 90 and d value ranging from 0 to 5,000 m].

Table 1 shows the correlation matrix of a selection of these per-
formance metrics. Correlationswith 0.4 or higher are highlightedin
light gray, and correlationswith—0.4 or lower are highlighted in dark
gray. Most of the correl ations between the performance metrics and
ratings seemtofit intuition. For example, PSNGR/HR and TRIPSHR
have positive correlations with the ratings, whereasthe AVG DIST,
DISTS> 5k, DEADHEAD, and ZZ metrics have significant negative
correlations with the ratings. The AVG DIST metric also seems
to be highly correlated with the ZZ metrics. Perhaps surprisingly,
PSNGR/HR, the main productivity measure, has arelatively weak
correlation with the ratings.
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FIGURE 1 A run with PSNGR/HR = 1.049, DEADHEAD = 1.465, DELAY = 0.46, AVG DIST = 6240.78,

Z7(45,2500) = 0.5000, and ZZ(75,5000) = 0.3333.

DATA MINING

This preliminary study used 6 days of datafrom DARTS. The data
consist of 50, 50, 50, 51, 60, and 50 runs per day, with atotal of 311
runs. Included are the longitude and latitude of every pickup and
dropoff, as well as the negotiated time with the customer and the
vehicle' s expected arrival time at that stop. Datafrom 5 of the days
are used as the training set to build the data mining models and test
the prediction accuracy of these models on the remaining 1-day
“hold-out” data. The training set and testing set comprise 261 runs
and 50 runs, respectively.

Several regression and classification tools were tested to rank the
quality of the runs from worst to best. The performance metrics
described above were used as the independent variablesin al the
models. In the regression models, the ratings are used as the depen-
dent variable. For classification, the ratings are converted to bad or
good, where arating less than or equal to 5 is considered bad and
arating greater than 5 is considered good. This study uses linear
regression and regression treesfor regression and logistic regression
for classification.

The models rank the runs according to their predicted ratings for
linear regression and regression trees and according to the predicted
likelihood of being a good run for logistic regression. For these
ranking algorithms, a cutoff level also needs to be defined to con-
sider all runs with predicted value worse than the cutoff level to be
bad. In the implementation phase, the human scheduler ideally

needs to examine only those runs that have a predicted value less
than the cutoff. This cutoff level should be high enough to capture
the majority of the bad runsin the schedule. However, if the cutoff
is too high, then the number of bad runs will be overestimated,
resulting in less efficient use of the scheduler’ stime.

To measure the performance of the data-mining models, thefalse
negativerate (FNR) and detection rate (DR) of themodelson avari-
ety of cutoff levels are calculated. The FNR is the percentage of
truly bad runs among the total number of runs that are predicted
good (i.e., with predicted value greater than the cutoff). The DR is
the percentage of runs that are predicted as bad. Thus, an effective
model would have a cutoff level with alow FNR and alow DR.

Before the results of these models are illustrated, the data pre-
processing steps are described.

Data Preprocessing

The data-mining procedure required two data preprocessing steps:
data balancing and subset selection.

Data Balancing

Figure 2 illustratesthe distribution of theratingsin thetraining data.
Runswith ratingslessthan or equal to 3 made up lessthan 3% of the



TABLE 1 Correlation Coefficient Matrix of Performance Metrics

PSNGR/ TRIPS/ DEAD WC/ RIDE RIDE AVG AVG MAX DISTS ZZ 7z 7z 7z 7z
Rating HR HR HEAD DELAY HR  TIME >45 RIDE DIST DIST >5k  (451000) (45 2500) (455000) (75,1,000) (75,2,500)
PSNGR/HR 0.11 1.00
TRIPS/HR 0.16 0.69 1.00
DEADHEAD -033  -019  -0.30 1.00
DELAY -0.18 0.37 0.16 0.11 1.00
WC/HR 0.18 0.22 015 -017  -003 1.00
RIDE TIME 0.10 052 038  -0.02 0.17 021 100
RIDE >45 0.04 0.20 017  -0.13 0.09 004 065 1.00
AVG RIDE 009  -0.10 002 -019 -013 -004 056 066 1.00
AVGDIST -023 | -052  -065 047 -003 -031 -032 -004 014 100
MAXDIST  -004 -020  -034 0.42 005 -013 -004 008 010 067 1.00
DISTS>5k -024 | -049 057 039 -003 -032 -032 -008 009 08 041 100
77(45,1,0000 -017  -025  -0.33 0.16 007 -021 -026 -018 -012 035 012 035 1.00
77(45,2500) -022  -032 | -040 0.24 005 -023 -031 -017 -009 046 013 046 0.86 1.00
77(45,50000 -021  -035 | -043 0.32 004 -026 -032 -018 -006 058 024 070 0.69 0.78 1.00
77(75,1,0000 -017  -028  -0.39 020 -001 -023 -030 -015 -016 042 018 036 0.72 0.62 0.48 1.00
77(75,2500) -021  -0.40 | -049 028 -001 -025 -038 -016 -011 056 022 050 0.63 0.79 0.59 0.81 1.00
Z7(75,5000) -026 | -043  -053 0.38 000 -028 -035 -015 -004 069 032 080 051 0.63 0.84 0.60 0.73
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FIGURE 2 Distribution of the ratings in training data.

training data, yet these are the very runsthat need to be detected. A
trivial prediction model can predict all runsasbeing good (i.e., with
ratings of 6 or higher). Such a model would have high prediction
accuracy, but would be unableto differentiate between good and bad
runs. To bring more emphasis to the lower-rated runs, the models
were trained on two additional data sets using different sampling
methods commonly used in data mining and machine learning
(11-13). In the undersampl ed set, four runswere randomly sampled
from each rating category. Thus, each rating category hasfour runs,
except rating 3, for which only three runswere supplied. Thistraining
set allowsfor equal distribution of the runs and has the advantage
of not changing the oddsratio in logistic regression (14). The clear
disadvantageisthat very few runs are left—the training set now has
only 39 runs. Inthe oversampled or in the undersampled set, 26 runs
are sampled from each rating category. This technique is over-
sampling the underrepresented rating category and undersampling
the overrepresented categories. Thisdataset contains 260 runs, which
isroughly equal tothe original size. Thetesting set isunchanged, with
50 data points—eight of them being bad runs (i.e., with ratings less
than or equal to 5).

Subset Selection

There are 28 performance metrics cal cul ated for each run; however,
only afraction of these may be critical in predicting the quality of a
run. Primarily for robustness purposes—that is, to limit the variance
of the predicted dependent variable—it is desirable to use asmall
subset of the independent variables (15, 16). Thus, besides running
the data-mining tools on the full model, a subset of the variablesis
also selected. Thefollowing are the different variable subsets tested:

1. Full model: includes all 28 performance metrics.

2. SubsetA: includesonly six metrics: PSNGR/HR, DEADHEAD,
DELAY, AVG DIST, ZZ(45, 2,500), ZZ(75, 5,000). These metrics
were chosen after discussionswith DARTS and after initial empirical
testing.

3. SubsetB: includesonly three metrics: DEADHEAD, DELAY,
Z7Z(45, 2,500). These metrics were chosen after discussions with
DARTS and &fter initial empirical testing.

For the linear and logistic regression models, both forward and
backward sel ection were also tested. However, using thefull model,
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either SubsetA or SubsetB, or both, had superior prediction perfor-
mances to forward and backward selection in al cases. Thus, the
results of the forward and backward selection are not presented in
thiswork.

Linear Regression

SPSS softwareis used for the linear |east squares regression model.
Out of al thedifferent model stested, themodel using the oversampled
or the undersampled data set with SubsetA of the performance metrics
appears to perform best (17). The root mean square and mean
absolute error of thetraining set are 2.2136 and 1.8132, respectively,
with an R? of 0.406. The root mean square and mean absolute error
of the test set are 2.3137 and 1.8680, respectively. Figure 3 illus-
trates the FNR and the DR of the model with varying cutoff levels
onthetesting set. To get a0% FNR, aminimum cutoff level of 6.299
isneeded, which hasacorresponding DR of 46.81%; in other words,
to capture al the bad runs in the testing set, 46.81% of the lowest
rated testing set runswould need to be examined. Table 2 illustrates
the corresponding linear regression model.

Regression Trees

A regression tree is adecision tree approach on regression in which
abinary treeisbuilt so that the dataare split according to asplit deci-
sion (e.g., DEADHEAD <20 or not, PSNG/HR < 1.0 or not) at each
nonleaf node (18, 19). At aleaf or terminal node, it builds a linear
regression model. The aim is to build such atree that the actual
dependent variable value and predicted dependent variable value of
each training set dataare asclose aspossible, often intermsof squared
errors. GUIDE is used as the regression tree software (20).

The regression tree method worked best on the undersampled
data set with a full set of variables. The root mean square and the
mean absolute error of the training set are 2.3901 and 1.9992,
respectively, with an R? of 0.311. The root mean square and the
mean absolute error of thetesting set are 2.5717 and 2.1944, respec-
tively. Figure 4 illustrates the FNR and the DR on the testing set
with various cutoff levels. To get a0% FNR, aminimum cutoff level
of 5.26 is needed, which corresponded to a 36% DR. After prun-
ing of the tree using 10-fold crossvalidation, the resulting decision
tree has only one node—that is, it ultimately simplifies to alinear
regression model. The resulting regression model used only two
variables: DELAY and ZZ(45, 1,000). The linear regression of the
regressiontreemodel (undersampling with SubsetA) isshown below:

Coefficient t-Satistic p-Value
(Constant) 5.483 13.747 0.000
DELAY -0.883 —2.057 0.047
ZZ(45,1,0000 -1.520 -3.789 0.001

Logistic Regression

SPSS softwareisused for the binary logistic regression model. Out of
all the different model stested, themodel using the oversampled or the
undersampled data set with SubsetA of the variables performed best
(17). Themodel hasa-2 log likelihood of 281.125, a Cox and Snell
Re value of 0.251, aNagelkerke R® value of 0.335, and a chi-square
value of 75.311 with significance under 0.0001. Figure 5 illustrates
the FNR and DR on the testing set. All the bad runs were captured
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FIGURE 3 FNR and DR of linear regression model.

with a cutoff level of 0.562, which corresponded to a 52% DR.
Details of the model are shownin Table 3.

Discussion

Itisdifficult to say whether one data-mining model dominates over
the others. It appearsthat all three models are able to rank thetesting
set runs so that the top 50% of the lowest-ranked runs capture all of
the actual bad runs. The regression results from the regression tree
appear to be most efficient, in that it is able to capture all of the
bad runswith a36% DR. Thisimpliesthat ahuman scheduler using
thismodel on thetesting datawould have seen all eight bad runsinthe

TABLE 2 Linear Regression Model: Oversampling
and Undersampling with SubsetA

Coefficients t-Statistic p-Vaue
(Constant) 5.507 39.539 0.000
DEADHEAD —0.300 —1.868 0.063
Waittimel5 -0.813 -5.593 0.000
ZZ(45, 2,500) —-0.868 —-4.508 0.000
PSNGR/HR —-0.045 -0.269 0.788
AVGDIST 0.103 0.488 0.625
ZZ(75, 5,000) -1.019 -4.139 0.000

testing set by examining only the worst 36% of theruns. Becausethe
model smplifiestoalinear regression model and iseasy toimplement,
the resulting model isimplemented in this methodol ogy.

IMPLEMENTATION

A Java-based implementation of the methodology was developed
that readsin a set of run dataand then assignsratings for these runs
onascaeof 0to 100. Theseratings are simply scaled from the 1 to
10 rating outputted from the earlier linear regression, solely for ease
of use. Therunscan then be sorted either chronologically or by rat-
ing, and the program can output a Microsoft Excel report. If the
runs are sorted by ratings, the user can determine the appropriate
cutoff level.

Along with therating, the program will also output a description
for each run. Descriptions will consist only of negative comments
on the run that are generated by looking at each metric for the run.
If ametricismorethan 1.5 standard deviations away from the mean
in the nonfavorable direction, then it outputs adescription indicating
that this metric may be partly responsible for the poor rating. This
tolerance of 1.5 can easily be modified by the user. Thisfeature was
received very favorably by the manager of DARTS. See Figure6 for
the graphical user interface.

The methodology also includes a feedback process that allows
DARTSdispatchersto update the current data, helping to ensure that
future runswill be rated more correctly. If dispatchers are unsatisfied
with apredicted rating, they can pressthe Edit Rating button to update
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TABLE 3 Logistic Regression
Model: Oversampling and
Undersampling with SubsetA

Coefficients
(Constant) —-0.362
DEADHEAD -0.373
Waittimel5 —-0.580
ZZ7(45, 2,500) -0.235
PSNGR/HR 0.008
AVGDIST -0.683
ZZ(75, 5,000) -0.010

that run’ srating. The dispatcher can also choose to not rate arun at
all by pressing Remove Run. When the dispatchers are satisfied with
all theratings, they can pressAdd to Training Datato add the currently
rated runsinto the training data.

CONCLUSION

The goal of this study was to build an automated system to detect
bad runs. Such atool can aid paratransit organizations in cutting
down thetime needed by human schedul ersto filter out these bad runs.
Key aspects of this approach are defining and cal culating appropriate
quantitative performance metrics, having a decision maker at the
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organization rate runs, and building a prediction model that can link
the performance metrics to the corresponding ratings.

This preliminary work illustrates an example of such atechnique
with many direct extensions. For example, only afew data-mining
models have been explored—in the future, the data could be tested
on more sophisticated data-mining and machine learning tools. In
addition, the data preprocessing step could be extended to remove
outliersin the data and consider additional variable subsets. There
appeared to be severa errorsintheratings of the data set, yet because
of the limited amount of data, they could not be omitted. More data
along with amethod to remove potentially erroneous datawill likely
produce significantly better prediction accuracy from all models.

In addition, different paratransit organizations have different char-
acteristics that may require additional or modified performance
metrics. Thus, the user needs to work with the decision makers to
ensure that all essential metrics are captured in the model.

Thisapproachisaflexibleand smpleframework for detecting poor
runs. Evenwiththevery small data set, encouraging prediction results
could be seen. Thus, it seemsthat such amethodology can be easily
extended and implemented in many other paratransit organizations
around the world.
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Run Rater

Date Run Description

11/17/2008 TEL 21 High wait times.

11/17/200&
11/17/2008
11/17/200&
11/17/2006
1171772008
11/17/2008
11/17/2006
11/17/200&
11/17/2008
11/17/200&
11/17/200&
1171772008
11/17/2008
11/17/2006
11/17/200&
11/17/2008
11/17/2006
11/17/200&
11/17/2008
11/17/200&
11/17/200&
1171772008
11/17/2008
11/17/2006
11/17/200&
11/17/2008
11/17/200&
11/17/200&
11/17/2008
11/17/2008
11/17/2006
11/17/200&
11/17/2008
11/17/2006
11/17/200&
11/17/2008

718
710
776
TE3
TR
vezs
753
748
737
Veos
T4&
T,
781
72
725
780
FIL
Ta4d
VEelo
Vens
759
738
743
T3
712
7239
730
ves7
745
TR
762
787
VEll
TzZ0
Vesl
VEZ4

High deadheading. Long trips. Backtracking.
Low productivity. Long trips. Backtracking.
Long trips. Backtracking. Zigzagging.

High deadheading. Long trips. Backtracking.
Low productivity. Backtracking. Zigzagging.
High deadheading.

Zigzagging.

Long trips. Backtracking.

High deadheading.
Long trips. Zigzagging.
Low productivity. Long trips.
Long trips.

Low productivity. Long trips.

High wait times.

Low productivity. Zigzagging.

High deadheading.

Long trips. Zigzagging.

Long trips.

Zigzagging.
Zigzagging.

Zigzagging.

[»

Load Runs Sort by Date

Generate Excel Report

FIGURE 6 User interface of the implementation.
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