
income. Some of these concerns can be accommodated, either fully
or partially, in the scheduling process (such as breaks and number
of trips), whereas others are difficult to explicitly account for (1).

Lastly, the service providers and agencies must ensure the finan-
cial vitality of their service systems under constrained resources and
budget. Maximizing productivity while meeting demand is therefore
one of their top operating goals in preparing service schedules. This
goal is usually translated into the scheduling objective of minimizing
total service hours and vehicle distance.

To account for all these concerns, the scheduling process must take
into account multiple system objectives and a large set of system
constraints. Complicating the matter further is the fact that many of
these objectives conflict with one another; satisfying some would
mean sacrificing others. For example, a highly productive schedule
with efficient ridesharing and utilization of available vehicle capacity
could result in significant delays to passengers. In contrast, a system
that emphasized schedule adherence or on-time performance would
generally have to sacrifice some productivity to achieve this goal.

A range of different scheduling methods, from manual to fully
automated, are being used today in the paratransit industry (1, 2).
Manual scheduling by human schedulers is still quite popular in
paratransit, especially in small- and medium-sized systems. Human
schedulers can utilize their experience and knowledge to identify
trip patterns and devise near-optimal schedules. They also have the
unique ability to deal with qualitative and conflicting goals and find
balanced solutions that are acceptable to all stakeholders. Manual
scheduling is, however, limited in its ability to handle high-demand
service systems (e.g., those with more than 1,000 trips per day). For
these systems, a computerized scheduling system that can efficiently
solve large, real-world scheduling problems is required. The speed
advantages of these systems also mean that more options can be
assessed and what-if analyses easily conducted.

Central to most computerized scheduling systems is a set of opti-
mization algorithms that solve a mathematically formulated problem
called dial-a-ride problem (DARP). The common formulation of
DARP includes a generalized cost function to be minimized and a
set of service quality constraints (3–7 ). Because of the fundamental
nature of these algorithms, the computer-generated runs usually have
a large variation in performance; that is, they include some good runs,
some mediocre ones, and a few bad ones. It is often these bad runs
that generate customer and driver complaints and create a negative
view of the underlying scheduling system.

The performance of computer-aided scheduling systems was inves-
tigated by Pagano et al., who found that many operators do not use
the scheduling features of the software packages that they purchased
and that some “pre- and post-implementation comparisons do not
show the kind of dramatic efficiency changes operators have hoped
for” (8). A later study by Pagano et al. found that computer-aided
scheduling and dispatching had a significant influence on the quality
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The simple productivity measures and hard constraints used in many
paratransit vehicle scheduling software programs do not fully capture
the interest of all the stakeholders in a typical paratransit organization
(e.g., passengers, drivers, municipal government). As a result, many
paratransit agencies still retain a human scheduler to look through all
of the schedules to manually pick out impractical, unacceptable runs.
(A run is considered one vehicle’s schedule for one day.) The goal of this
research was to develop a systematic tool that can compute all the relevant
performance metrics of a run, predict its overall quality, and identify
bad runs automatically. This paper presents a methodology that includes
a number of performance metrics reflecting the key interests of the
stakeholders (e.g., number of passengers per vehicle per hour, dead-
heading time, passenger wait time, passenger ride time, and degree of
zigzagging) and a data-mining tool to fit the metrics to the ratings pro-
vided by experienced schedulers. The encouraging preliminary results
suggest that the proposed methodology can be easily extended to and
implemented in other paratransit organizations to improve efficiency by
effectively detecting poor schedules.

Demand-responsive transit or paratransit operations involve a number
of managerial functions, such as trip reservation, vehicle monitoring,
scheduling and dispatching, and business reporting. Among these
functions, the most challenging is the scheduling process, which
generates vehicle operating schedules by assigning trip requests to
a fleet of vehicles. The challenge is mainly caused by the involvement
of multiple stakeholders in a paratransit system, including the ser-
vice provider, the customers, and the drivers, all of whom usually
have diverse interests and thus different views of what constitutes a
good or bad run. (A run is considered a single vehicle’s schedule for
a single day.)

From a customer’s point of view, a good run is one that would lead
to on-time pickup and delivery, minimum diversion from a direct
ride, and consistent and familiar routes and drivers. These concerns
are typically translated into scheduling constraints such as guaranteed
service, maximum ride time, and maximum wait time.

The drivers’ perspective on schedules is mostly related to the
characteristics of their assigned shifts, such as shift type, availabil-
ity of appropriate breaks (e.g., for lunch), types of clients assigned
(e.g., ambulatory versus wheelchair passengers), the number and types
of trips (e.g., long versus short), and, for contract-based service, total
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of service of paratransit systems (9). A recent study by Fu et al. also
studied the impact of scheduling method on the technical efficiency
of a paratransit system, finding mixed results (10).

To identify problematic, low-quality runs, some agencies and ser-
vice providers still use human schedulers to check all runs generated
by a computer system and screen those that are not acceptable (2).
The bad runs are then modified by either removing some trips or
exchanging trips with other runs. This process is time consuming
and tedious and places a significant burden on the human schedulers.

This research attempts to develop a methodology that can be
used to evaluate computer-generated runs and identify those that
are likely unacceptable from the view of an experienced sched-
uler. The focus is on testing the feasibility of such a methodology
instead of developing a generic tool that can be applied to all sys-
tems. Several performance metrics are first introduced that are
considered to be reflective of the overall quality of a run with respect
to the key interests of the stakeholders. A data mining methodology
to fit a run’s metrics to its quality as rated by an experienced sched-
uler is then described. The proposed methodology was imple-
mented and assessed using field data from the Disabled and Aged
Regional Transportation Systems (DARTS) of Hamilton, Ontario,
Canada.

BACKGROUND AND PROPOSED METHODOLOGY

DARTS is a door-to-door transportation service for the elderly and
disabled in the city of Hamilton. DARTS has 135 employees and a
fleet of 66 buses and 20 vans directed on variable bus routes by a
schedule and dispatch service that serves approximately 8,000 reg-
istered passengers. Currently, DARTS uses a computerized sched-
uling system to generate schedules for daily operations. A human
scheduler is, however, employed to manually review all the runs to
identify the impractical, unacceptable runs. The goal of this research
is motivated by the need to develop a tool that can help the dis-
patcher rank the computer-generated runs to identify those considered
unacceptable.

The proposed methodology is in two parts:

1. Performance metrics and quality rating: All the performance
metrics that affect the quality of a run are defined. These are measures
that the decision maker would consciously or unconsciously use to
rate a run. The schedule is essentially being represented with these
quantifiable measures. Also, an employee of DARTS acted as the
decision maker by rating past runs on a scale of 1 to 10 (with 1 being
the worst and 10 being the best).

2. Data-mining model: Given the performance metrics and the
corresponding ratings for a group of schedules, a data-mining tool
was fit to model the relationship between the metrics and the ratings.
After this tool is refined, it will be used to determine the quality
of unrated runs. This final step will allow DARTS to automate its
schedule review process.

PERFORMANCE METRICS AND QUALITY RATING

From several discussions with the DARTS team, including the man-
ager, schedulers, dispatchers, and drivers, 28 performance metrics
were established. Figure 1 illustrates an example of a run with some
of its corresponding performance metrics. These metrics were then
grouped into those believed to have a positive effect on the quality

of a run, and those believed to have a negative effect on quality of a
run. Several examples follow.

Metrics with Positive Effects on Quality

• PSNGR/HR: number of passengers per hour (i.e., the average
number of passengers the vehicle services per hour on the given run);

• TRIPS/HR: number of trips per hour (i.e., the average number
of stops the vehicle services per hour on the given run). If multiple
passengers get picked up or dropped off at a single stop, the stop is
counted only once; and

• WC/HR: wheelchair passengers serviced per hour (i.e., the
average number of wheelchair passengers the vehicle services per
hour on the given run).

Metrics with Negative Effects on Quality

• DEADHEAD: total deadheading time (measures the total time
the vehicle runs without a passenger);

• DELAY: total cumulative delay time for passengers (i.e., the dif-
ference between the estimated time of arrival and the negotiated
arrival time, exceeding 15 min. For example, if the negotiated time is
4:00 p.m. and the estimated arrival time is 4:10 p.m., then there is no
delay. However, if the arrival time is 4:20 p.m., then there is a delay
of 5 min. This is a cumulative measure over all passengers on the run);

• RIDE TIME: total cumulative ride time for all passengers, which
sums up the total duration that each passenger spends on the vehicle;

• RIDE > 45: total cumulative ride time for all passengers exceed-
ing 45 min, which sums up the total duration exceeding 45 min that
each passenger spends on the vehicle;

• AVG RIDE: average ride time (i.e., the total duration each pas-
senger spends on the vehicle);

• AVG DIST: average trip distance (i.e., the average distance
between two consecutive stops in the run);

• MAX DIST: maximum trip distance (i.e., the maximum distance
between any two consecutive stops in the run);

• DISTS ≥ 5k: proportion of distances greater than or equal to 5 km
(i.e., the fraction of distances between any two consecutive stops
that exceeds 5 km); and

• ZZ(θ, d): zigzag metric [i.e., the proportion of turns that have
an angle less than or equal to θ and a distance greater than or equal
to d (in meters). It is meant to detect sharp turns or capture runs that
go from one part of the city to the far opposite side of the city. For
example, if the vehicle goes from point A to point B to point C,
this turn would be counted if the angle (AB, BC) ≤ θ and distance
(BC) ≥ d. Specific zigzag metrics calculated include those with θ
value ranging from 20 to 90 and d value ranging from 0 to 5,000 m].

Table 1 shows the correlation matrix of a selection of these per-
formance metrics. Correlations with 0.4 or higher are highlighted in
light gray, and correlations with −0.4 or lower are highlighted in dark
gray. Most of the correlations between the performance metrics and
ratings seem to fit intuition. For example, PSNGR/HR and TRIPS/HR
have positive correlations with the ratings, whereas the AVG DIST,
DISTS ≥ 5k, DEADHEAD, and ZZ metrics have significant negative
correlations with the ratings. The AVG DIST metric also seems
to be highly correlated with the ZZ metrics. Perhaps surprisingly,
PSNGR/HR, the main productivity measure, has a relatively weak
correlation with the ratings.



DATA MINING

This preliminary study used 6 days of data from DARTS. The data
consist of 50, 50, 50, 51, 60, and 50 runs per day, with a total of 311
runs. Included are the longitude and latitude of every pickup and
dropoff, as well as the negotiated time with the customer and the
vehicle’s expected arrival time at that stop. Data from 5 of the days
are used as the training set to build the data mining models and test
the prediction accuracy of these models on the remaining 1-day
“hold-out” data. The training set and testing set comprise 261 runs
and 50 runs, respectively.

Several regression and classification tools were tested to rank the
quality of the runs from worst to best. The performance metrics
described above were used as the independent variables in all the
models. In the regression models, the ratings are used as the depen-
dent variable. For classification, the ratings are converted to bad or
good, where a rating less than or equal to 5 is considered bad and
a rating greater than 5 is considered good. This study uses linear
regression and regression trees for regression and logistic regression
for classification.

The models rank the runs according to their predicted ratings for
linear regression and regression trees and according to the predicted
likelihood of being a good run for logistic regression. For these
ranking algorithms, a cutoff level also needs to be defined to con-
sider all runs with predicted value worse than the cutoff level to be
bad. In the implementation phase, the human scheduler ideally
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needs to examine only those runs that have a predicted value less
than the cutoff. This cutoff level should be high enough to capture
the majority of the bad runs in the schedule. However, if the cutoff
is too high, then the number of bad runs will be overestimated,
resulting in less efficient use of the scheduler’s time.

To measure the performance of the data-mining models, the false
negative rate (FNR) and detection rate (DR) of the models on a vari-
ety of cutoff levels are calculated. The FNR is the percentage of
truly bad runs among the total number of runs that are predicted
good (i.e., with predicted value greater than the cutoff). The DR is
the percentage of runs that are predicted as bad. Thus, an effective
model would have a cutoff level with a low FNR and a low DR.

Before the results of these models are illustrated, the data pre-
processing steps are described.

Data Preprocessing

The data-mining procedure required two data preprocessing steps:
data balancing and subset selection.

Data Balancing

Figure 2 illustrates the distribution of the ratings in the training data.
Runs with ratings less than or equal to 3 made up less than 3% of the

FIGURE 1 A run with PSNGR/HR � 1.049, DEADHEAD � 1.465, DELAY � 0.46, AVG DIST � 6240.78, 
ZZ(45,2500) � 0.5000, and ZZ(75,5000) � 0.3333.



TABLE 1 Correlation Coefficient Matrix of Performance Metrics

PSNGR/ TRIPS/ DEAD WC/ RIDE RIDE AVG AVG MAX DISTS ZZ ZZ ZZ ZZ ZZ
Rating HR HR HEAD DELAY HR TIME >45 RIDE DIST DIST ≥5k (45, 1,000) (45, 2,500) (45, 5,000) (75, 1,000) (75, 2,500)

PSNGR/HR 0.11 1.00

TRIPS/HR 0.16 0.69 1.00

DEADHEAD −0.33 −0.19 −0.30 1.00

DELAY −0.18 0.37 0.16 0.11 1.00

WC/HR 0.18 0.22 0.15 −0.17 −0.03 1.00

RIDE TIME 0.10 0.52 0.38 −0.02 0.17 0.21 1.00

RIDE >45 0.04 0.20 0.17 −0.13 0.09 0.04 0.65 1.00

AVG RIDE 0.09 −0.10 0.02 −0.19 −0.13 −0.04 0.56 0.66 1.00

AVG DIST −0.23 −0.52 −0.65 0.47 −0.03 −0.31 −0.32 −0.04 0.14 1.00

MAX DIST −0.04 −0.20 −0.34 0.42 0.05 −0.13 −0.04 0.08 0.10 0.67 1.00

DISTS≥5k −0.24 −0.49 −0.57 0.39 −0.03 −0.32 −0.32 −0.08 0.09 0.85 0.41 1.00

ZZ(45, 1,000) −0.17 −0.25 −0.33 0.16 0.07 −0.21 −0.26 −0.18 −0.12 0.35 0.12 0.35 1.00

ZZ(45, 2,500) −0.22 −0.32 −0.40 0.24 0.05 −0.23 −0.31 −0.17 −0.09 0.46 0.13 0.46 0.86 1.00

ZZ(45, 5,000) −0.21 −0.35 −0.43 0.32 0.04 −0.26 −0.32 −0.18 −0.06 0.58 0.24 0.70 0.69 0.78 1.00

ZZ(75, 1,000) −0.17 −0.28 −0.39 0.20 −0.01 −0.23 −0.30 −0.15 −0.16 0.42 0.18 0.36 0.72 0.62 0.48 1.00

ZZ(75, 2,500) −0.21 −0.40 −0.49 0.28 −0.01 −0.25 −0.38 −0.16 −0.11 0.56 0.22 0.50 0.63 0.79 0.59 0.81 1.00

ZZ(75, 5,000) −0.26 −0.43 −0.53 0.38 0.00 −0.28 −0.35 −0.15 −0.04 0.69 0.32 0.80 0.51 0.63 0.84 0.60 0.73



training data, yet these are the very runs that need to be detected. A
trivial prediction model can predict all runs as being good (i.e., with
ratings of 6 or higher). Such a model would have high prediction
accuracy, but would be unable to differentiate between good and bad
runs. To bring more emphasis to the lower-rated runs, the models
were trained on two additional data sets using different sampling
methods commonly used in data mining and machine learning
(11–13). In the undersampled set, four runs were randomly sampled
from each rating category. Thus, each rating category has four runs,
except rating 3, for which only three runs were supplied. This training
set allows for equal distribution of the runs and has the advantage
of not changing the odds ratio in logistic regression (14). The clear
disadvantage is that very few runs are left—the training set now has
only 39 runs. In the oversampled or in the undersampled set, 26 runs
are sampled from each rating category. This technique is over-
sampling the underrepresented rating category and undersampling
the overrepresented categories. This data set contains 260 runs, which
is roughly equal to the original size. The testing set is unchanged, with
50 data points—eight of them being bad runs (i.e., with ratings less
than or equal to 5).

Subset Selection

There are 28 performance metrics calculated for each run; however,
only a fraction of these may be critical in predicting the quality of a
run. Primarily for robustness purposes—that is, to limit the variance
of the predicted dependent variable—it is desirable to use a small
subset of the independent variables (15, 16). Thus, besides running
the data-mining tools on the full model, a subset of the variables is
also selected. The following are the different variable subsets tested:

1. Full model: includes all 28 performance metrics.
2. SubsetA: includes only six metrics: PSNGR/HR, DEADHEAD,

DELAY, AVG DIST, ZZ(45, 2,500), ZZ(75, 5,000). These metrics
were chosen after discussions with DARTS and after initial empirical
testing.

3. SubsetB: includes only three metrics: DEADHEAD, DELAY,
ZZ(45, 2,500). These metrics were chosen after discussions with
DARTS and after initial empirical testing.

For the linear and logistic regression models, both forward and
backward selection were also tested. However, using the full model,
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either SubsetA or SubsetB, or both, had superior prediction perfor-
mances to forward and backward selection in all cases. Thus, the
results of the forward and backward selection are not presented in
this work.

Linear Regression

SPSS software is used for the linear least squares regression model.
Out of all the different models tested, the model using the oversampled
or the undersampled data set with SubsetA of the performance metrics
appears to perform best (17 ). The root mean square and mean
absolute error of the training set are 2.2136 and 1.8132, respectively,
with an R2 of 0.406. The root mean square and mean absolute error
of the test set are 2.3137 and 1.8680, respectively. Figure 3 illus-
trates the FNR and the DR of the model with varying cutoff levels
on the testing set. To get a 0% FNR, a minimum cutoff level of 6.299
is needed, which has a corresponding DR of 46.81%; in other words,
to capture all the bad runs in the testing set, 46.81% of the lowest
rated testing set runs would need to be examined. Table 2 illustrates
the corresponding linear regression model.

Regression Trees

A regression tree is a decision tree approach on regression in which
a binary tree is built so that the data are split according to a split deci-
sion (e.g., DEADHEAD ≤ 20 or not, PSNG/HR ≤ 1.0 or not) at each
nonleaf node (18, 19). At a leaf or terminal node, it builds a linear
regression model. The aim is to build such a tree that the actual
dependent variable value and predicted dependent variable value of
each training set data are as close as possible, often in terms of squared
errors. GUIDE is used as the regression tree software (20).

The regression tree method worked best on the undersampled
data set with a full set of variables. The root mean square and the
mean absolute error of the training set are 2.3901 and 1.9992,
respectively, with an R2 of 0.311. The root mean square and the
mean absolute error of the testing set are 2.5717 and 2.1944, respec-
tively. Figure 4 illustrates the FNR and the DR on the testing set
with various cutoff levels. To get a 0% FNR, a minimum cutoff level
of 5.26 is needed, which corresponded to a 36% DR. After prun-
ing of the tree using 10-fold crossvalidation, the resulting decision
tree has only one node—that is, it ultimately simplifies to a linear
regression model. The resulting regression model used only two
variables: DELAY and ZZ(45, 1,000). The linear regression of the
regression tree model (undersampling with SubsetA) is shown below:

Coefficient t-Statistic p-Value

(Constant) 5.483 13.747 0.000
DELAY −0.883 −2.057 0.047
ZZ(45, 1,000) −1.520 −3.789 0.001

Logistic Regression

SPSS software is used for the binary logistic regression model. Out of
all the different models tested, the model using the oversampled or the
undersampled data set with SubsetA of the variables performed best
(17). The model has a −2 log likelihood of 281.125, a Cox and Snell
R2 value of 0.251, a Nagelkerke R2 value of 0.335, and a chi-square
value of 75.311 with significance under 0.0001. Figure 5 illustrates
the FNR and DR on the testing set. All the bad runs were captured

FIGURE 2 Distribution of the ratings in training data.
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with a cutoff level of 0.562, which corresponded to a 52% DR.
Details of the model are shown in Table 3.

Discussion

It is difficult to say whether one data-mining model dominates over
the others. It appears that all three models are able to rank the testing
set runs so that the top 50% of the lowest-ranked runs capture all of
the actual bad runs. The regression results from the regression tree
appear to be most efficient, in that it is able to capture all of the
bad runs with a 36% DR. This implies that a human scheduler using
this model on the testing data would have seen all eight bad runs in the
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testing set by examining only the worst 36% of the runs. Because the
model simplifies to a linear regression model and is easy to implement,
the resulting model is implemented in this methodology.

IMPLEMENTATION

A Java-based implementation of the methodology was developed
that reads in a set of run data and then assigns ratings for these runs
on a scale of 0 to 100. These ratings are simply scaled from the 1 to
10 rating outputted from the earlier linear regression, solely for ease
of use. The runs can then be sorted either chronologically or by rat-
ing, and the program can output a Microsoft Excel report. If the
runs are sorted by ratings, the user can determine the appropriate
cutoff level.

Along with the rating, the program will also output a description
for each run. Descriptions will consist only of negative comments
on the run that are generated by looking at each metric for the run.
If a metric is more than 1.5 standard deviations away from the mean
in the nonfavorable direction, then it outputs a description indicating
that this metric may be partly responsible for the poor rating. This
tolerance of 1.5 can easily be modified by the user. This feature was
received very favorably by the manager of DARTS. See Figure 6 for
the graphical user interface.

The methodology also includes a feedback process that allows
DARTS dispatchers to update the current data, helping to ensure that
future runs will be rated more correctly. If dispatchers are unsatisfied
with a predicted rating, they can press the Edit Rating button to update

TABLE 2 Linear Regression Model: Oversampling
and Undersampling with SubsetA

Coefficients t-Statistic p-Value

(Constant) 5.507 39.539 0.000

DEADHEAD −0.300 −1.868 0.063

Waittime15 −0.813 −5.593 0.000

ZZ(45, 2,500) −0.868 −4.508 0.000

PSNGR/HR −0.045 −0.269 0.788

AVG DIST 0.103 0.488 0.625

ZZ(75, 5,000) −1.019 −4.139 0.000

FIGURE 3 FNR and DR of linear regression model.
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FIGURE 4 FNR and DR of regression tree model.
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FIGURE 5 FNR and DR of logistic regression model.
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that run’s rating. The dispatcher can also choose to not rate a run at
all by pressing Remove Run. When the dispatchers are satisfied with
all the ratings, they can press Add to Training Data to add the currently
rated runs into the training data.

CONCLUSION

The goal of this study was to build an automated system to detect
bad runs. Such a tool can aid paratransit organizations in cutting
down the time needed by human schedulers to filter out these bad runs.
Key aspects of this approach are defining and calculating appropriate
quantitative performance metrics, having a decision maker at the
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organization rate runs, and building a prediction model that can link
the performance metrics to the corresponding ratings.

This preliminary work illustrates an example of such a technique
with many direct extensions. For example, only a few data-mining
models have been explored—in the future, the data could be tested
on more sophisticated data-mining and machine learning tools. In
addition, the data preprocessing step could be extended to remove
outliers in the data and consider additional variable subsets. There
appeared to be several errors in the ratings of the data set, yet because
of the limited amount of data, they could not be omitted. More data
along with a method to remove potentially erroneous data will likely
produce significantly better prediction accuracy from all models.

In addition, different paratransit organizations have different char-
acteristics that may require additional or modified performance
metrics. Thus, the user needs to work with the decision makers to
ensure that all essential metrics are captured in the model.

This approach is a flexible and simple framework for detecting poor
runs. Even with the very small data set, encouraging prediction results
could be seen. Thus, it seems that such a methodology can be easily
extended and implemented in many other paratransit organizations
around the world.
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TABLE 3 Logistic Regression
Model: Oversampling and
Undersampling with SubsetA

Coefficients

(Constant) −0.362

DEADHEAD −0.373

Waittime15 −0.580

ZZ(45, 2,500) −0.235

PSNGR/HR 0.008

AVG DIST −0.683

ZZ(75, 5,000) −0.010

FIGURE 6 User interface of the implementation.
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